
1 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

software construction
E d i t o r s : D a v e T h o m a s a n d A n d y H u n t ■ T h e P r a g m a t i c P r o g r a m m e r s
d a v e @ p r a g m a t i c p r o g r a m m e r. c o m ■ a n d y @ p r a g m a t i c p r o g r a m m e r. c o m

W
e begin this month with a look at
how to ruin a software project in
just three easy steps (there are
many more, of course, but we’ll
start with these):

1. Never look back.

Once you’ve finished writing a piece of code,
you’re done. You’re an excellent coder—you

don’t need any feedback from the code itself.
Just throw the code over your shoulder for
some other poor slob to test. Don’t bother to
check if the code is doing what you think it’s
doing, except maybe for one pass right “down
the middle” with normal, expected values.
Print the results out and if they look okay,
you’re done. Shovel out the code, adding it to
the nice compost pile of rising technical debt for
the whole team.

2. Never let go.
Never let go of code. Once written, stick

with it—in its current form—forever. It’s okay
to keep the worst code forever, after all, be-
cause the replacement might turn out even
worse—or take even longer to complete. The
code was hard enough to write the first time, so
hang on to it and don’t try to change it no mat-
ter what happens. Take a lesson from the fel-
low in the news who dropped his cell phone
down the public toilet on the Metro-North
commuter railroad. He decided on a bold
course of action and tried to rescue the lost
phone. Granted, he got his arm stuck in the
u-bend of the toilet and had to be rescued
with the Jaws of Life, disrupting rush hour
trains for millions. Now, the transit authority
is seeking damages against him as well, but
he had the right idea. Despite the costs, never
let go.

3. Do it differently.
Whether you are compiling, testing, creat-

ing a release, or doing end-user product instal-
lation, do it differently every time. The easiest
way to do this is to create a sheet of cryptic in-
structions for everyone to follow. People aren’t
as consistent as computers and so will tend to
do it just a little bit differently (or forget a
step) every time. While it’s true that you’ll see
some weird failures on some machines now
and then, the good news is that you’ll see your
project actually work on some machines some
of the time, too.

Three legs of support
These approaches will kill a project every

time. Fortunately, three simple practices can

Three Legs, No Wobble
Andy Hunt and Dave Thomas

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 1 9

SOFTWARE CONSTRUCTION

save a project from these and other
common mishaps: version control,
unit testing, and automation.

Despite the obviousness of these
practices, not everyone does them
and even fewer teams do them well.
According to one informal survey by
SD Times, close to 40 percent of pro-
ject teams in the US don’t use any form
of version control at all. Their policy
is “last one in, wins.” Many other
teams invest in expensive version
control systems that they don’t use
fully because of steep learning curves
or intensive administration require-
ments. These end up as useless
“shelfware.” Similarly, unit testing is
often given mere lip service (if even
that). Automation generally stops
with integrated development or build
environments.

We feel that these practices are so
important that we’ve written a new se-
ries of books to cover them, with one
book devoted to each practice. In this
column, we’ll look at what’s important
about each of these areas and list com-
monly used, freely available open
source tools that can help.

Version control
The world’s fanciest word processor

would be almost useless if it didn’t have
a Backspace key. At the end of a lengthy
document, you’d start typing v-e-r-y
s-l-o-w-l-y to avoid mistakes. A version
control system is a project’s Undo but-
ton. With proper version control in
place, developers have the freedom to
experiment, knowing they can always go
back to any previous version of code if
necessary.

Developers need to save their code
into the version control repository and
get fresh copies of other team member’s
changes frequently. When working on
code (or even books or columns like
this one), we tend to synchronize our
code with the repository several times
an hour, all day long. This helps pre-
vent integration nightmares and keeps
everyone on the team on the same
page.

When looking for a version control
system, consider the following features:

it should be able to operate across dis-
tributed clients, so that developers can
work from home during a blizzard or
team members in separate locations can
use it; it should work across all the op-
erating systems and platforms on which
you develop. We recommend systems
that feature optimistic locking, not
strict locking; strict locking lets only
one person edit a file at a time, and in
practice this seriously limits the team’s
throughput without any real benefit.

Finally, consider how the version
control system will work and play with
your chosen methodology. It might pro-
vide hooks or tie-ins to notify people
when code is ready for review or test-
ing, and so on.

The most popular open source ver-
sion control tools include the Concur-
rent Versions System (www.cvshome.
org) and its up-and-coming successor
Subversion (http://subversion.tigris.org).

Unit testing
Unit testing is poorly named, as it

has little to do with testing per se. We
use unit testing as the primary source
of developer feedback. It’s really the
same thing as the typical developer
practice of using temporary print state-
ments or checking values in a debugger,
except that we arrange to have the
computer check these values for us,
and we save our work so that we can
run this same test over and over again.

Unit testing allows for more aggres-
sive code rewriting—or replacing—be-
cause you can determine easily if the new
code is fulfilling the old code’s obliga-
tions. Along with a version control sys-
tem, this gives you great freedom to fix,
correct, rewrite, and experiment.

Unit test code itself should have the
following attributes:

■ Professional. Test code should be
well written, modular, well factored,
and decoupled—as professional as
the code that’s shipped to users. You
should have at least as much test
code as production code.

■ Automatic. Test code should check
all results itself and not leave deci-
sions open to human interpretation.
It should be equally easy to run one
test or all the tests in the system.

■ Independent. You should be able to
run any test at any time and in any
order. Individual tests should test
just one thing, without dragging in
large portions of the rest of the sys-
tem (that’s more suited for func-
tional testing, not unit tests). Mock
objects (that is, simplistic “stand-
ins” for real objects) can help here.

■ Repeatable. Tests shouldn’t depend
on any external resources that you
don’t control directly. You must
get the same results every time,
time after time.

The xUnit frameworks are available
for virtually every programming lan-
guage and environment under the sun, in-
cluding Java, C#, C++, Ruby, Perl, SQL,
HTML, and so on (www.xprogramming.
com/software.htm). Standard mock ob-
jects, mock object generators, and other
related products are freely available as
well (see http://mockobjects.com, http://
easymock.org, http://junitdoclet.org, and
http://cunitgen.org).

Automation
Any repetitive procedure must be

automated. Typically, this includes ac-
tivities such as building code, running
unit tests, creating a release, and end-user

Close to 40 percent
of project teams

in the US don’t use
any form of version

control at all.
Their policy is

“last one in, wins.”

Continued on p. 22

DESIGN

common functionality. Combined with
our inexperience with ASP.NET, this
led to a lot of duplication in the pre-
sentation layer.

We only internationalized output,
not input, but it still took one pair
about a week and a half. The culprit
was duplication. Rather than change
one method that handled all input and
output, we had to find all places that
output was generated and change that.
As with the security retrofit, this was
tedious, but not particularly hard.

Why does it work?
On all these projects, the difficulty

of making changes directly related to
specific design qualities. The most ob-
vious is duplication: when a change we
wanted was localized in a single class,
it was trivial. When we had to modify
similar code over and over, the change
was tedious and took a lot longer.

Other design qualities also affected
our ability to make changes. Simplicity
was important. With simpler designs,

we were less likely to encounter exist-
ing code. When adding features, we
were better off when there was no pre-
existing design to handle that feature.
Adding code that doesn’t exist is easy;
fixing someone’s preconceptions about
a feature first is more costly. The side-
bar lists a number of other design qual-
ities that have made our projects easier
to maintain and change.

Before you try
My experiments with continuous de-

sign have been very successful. I recom-
mend that you try it on your projects.
Before you begin, though, look
at your current process. Software
processes oriented around up-front de-
sign might not be friendly to continuous
design. At a minimum, you’ll need auto-
mated tests, a team-based approach to
changes (such as collective code owner-
ship), and commitment to continuously
evaluating and improving your design in
the face of schedule pressure.

You might wish to experiment with

continuous design by mixing it with
up-front design. If you do, be aware
that continuous design requires specific
design goals (see the sidebar). In partic-
ular, up-front designs often include
“extensibility hooks” for future design
changes. This approach makes contin-
uous design harder and should be
avoided.

O n my projects, continuous design’s
focus on simplicity and continuous
improvement has made the code

better and more maintainable over
time, rather than less. After experi-
menting with continuous design for so
long, I’m convinced that it’s harder to
paint yourself into a corner than it is
with up-front design. Try it for your-
self, and let me know how it worked
for you.

Jim Shore is the founder of Titanium I.T., a Portland, Ore-
gon, consultancy specializing in Extreme Programming. He’d like
to hear about your experiences with continuous design. Contact
him at jshore@titanium-it.com.

installation. But any task that a developer
has to perform more than three times is a
good candidate for automation.

Implementing automation can be as
simple as writing a shell script or batch
file, or a macro in your integrated de-
velopment environment. Or, you might
add additional rules or targets to an ex-
isting build script (such as Ant or Make
would use). It might require an entire
program itself, written in Ruby or
Java. However it’s implemented, make
sure that the automation code is kept
in version control and is advertised and
available for the entire team’s use.

Automation gives the team consis-
tency, reliability, and repeatability
across different developers and envi-
ronments. New developers can get on
board and be productive much faster if
all they have to do is push a button or
type a command, even if they’re build-

ing on a different platform than they’re
accustomed to.

Products to coordinate compilation
and building include old standbys such
as Ant (ant.apache.org) or Make (www.
gnu.org/software/make). Systems such
as AntHill (www.cs.unibo.it/projects/
anthill/index.html), Cruise Control
(http://cruisecontrol.sourceforge.net),
or Dartboard (http://public.kitware.
com/Dart) perform continuous build
and integration.

W ith these three legs in place, you’ll
have a firm base from which to
build great code.

Andy Hunt and Dave Thomas are partners
in The Pragmatic Programmers and authors of the new The
Pragmatic Starter Kit book series. Contact them via www.
PragmaticProgrammer.com.

Continued from p. 19

SOFTWARE CONSTRUCTION

Senior Technical Advisor for
Safety-Critical Electronic Systems

The FRA promotes and enforces safety
throughout the U. S. rail system. This posi-
tion provides technical leadership/advice for
the development of effective standards for
the safety and security of railroad electronic
systems. Requirements:

•Minimum of three years of experience
providing extensive knowledge of safety-
critical systems in areas such as railroads,
avionics, or space flight systems. Must
include experience pertaining to the design,
verification, and validation of safety-critical
systems, including knowledge of safety doc-
umentation, and security considerations.

•Ph.D. or M.S. in electronic/ computer
engineering, computer science, or compara-
ble field.

•Ability to communicate highly technical
information in writing and at meetings to
policy-makers with general backgrounds.

•Professional stature at the international
level in the field of safety-critical systems.

Position is in Washington, DC. U. S. citi-
zenship is required. Applications accepted
until February 9, 2004. Salary range is
$115,184 - $142,600. Visit http://www.fra.
dot.gov/Jobs.asp to view announcement
FRA-03-62VC.

Contact: Email: valerie.czawlytko@fra.dot.
gov, or call (202) 493-6112 or TDD (202)
493-6487/8.

FRA is an equal opportunity employer.

Federal Railroad
AdministrationU.S. Department

Of Transportation

